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4. Pohl’s Pendulum 
 
Background 

Damped oscillation 

Forced oscillation 

Logarithmic decrement 

Creeping 

 

Aim of the experiment  
 

1. Determination of damping constant of the pendulum for different eddy damping 

current. 

2. Draw the resonance curve for the pendulum under different eddy damping 

current. 

3. Estimation of the natural frequency of the pendulum. 

 

Apparatus required 
 

Torsion pendulum after Pohl 

Power supply 

Bridge rectifier 

Stopwatch  

Ammeter 

Connecting cords 

 

Pohl’s pendulum 

                              

Date:  
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Theory 
 In an oscillating system there is always a damping and hence the amplitude of the oscillator 

decreases with time. To maintain the amplitude an external forcing is required.  

We shall study both these cases in the present experiment. 

 

A. Underdamped oscillations: 

   In a torsional pendulum the restoring torque, M1, and the damping torque (resistance), 

M2,  are given by, 

M1= -D   and  M2 = -C  , 

 

where  = angle of rotation, D = torque per unit angle, C = factor of proportionality 

depending on the current which supplies the eddy current break. This results in the 

following equation of motion,  

       

                           0=++  DCI    ……………………………………………..(1)                           

where, I = pendulum’s moment of inertia about the axis of rotation and     = angular 

acceleration. 

Dividing equation (1) by I we obtain, 

 

                             02 2

0 =++   ……………………………………………..(2) 

 where,                       

                         
I
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2
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I

D
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0 . 

 is called the “damping constant” and 
I

D
=0  is the natural frequency of the 

undamped system. 

If the pendulum is rotated to one side and released from rest at  t = 0, such that  =  and 

  =0, at t = 0, then the solution of equation (2) is  
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Solution (3) shows that the amplitude of the underdamped oscillations decreases 

exponentially with time.  

 

The logarithmic decrement is defined as the natural logarithm of the ratio of successive 

amplitudes (see Fig 1.), 
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         ……………………………………………(4) 

where T=  /2 , is the time period of the underdamped oscillations. 
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                  Fig. 1. Underdamped oscillations and successive amplitudes 

For 22

0  = , the pendulum returns in a minimum of time to its initial position without 

oscillating (aperiodic case or critically damped). For 22

0   , the pendulum returns 

asymptotically to its initial position (creeping or overdamped).  

 

B. Forced oscillation 

 If the pendulum is acted on by an external torque 0 cosa aM M t= , then equation (2) 

changes to 

 

                     tF a cos2 0

2

0 =++   …………………………………(5) 

where, F0 = M0/I.  

 

In steady state, the solution of this differential equation is  

 

                             ( ) cos( )a at t   = −   ……………………………………..(6) 

 

where,  
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Furthermore,              .
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An analysis of equation (7) gives evidence of the following: 

 

1. The greater F0, the greater a . 

2. For a fixed value of F0, amplitude a exhibits a peak at a frequency, res , given by 

2222

0 2  −=−=res ………………………………….……(9) 

3. The greater , the smaller a . 
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Procedure  

                
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Electrical connection for the experiment 

 

A. Damped oscillations  

 

1. Make the electrical connections as per diagram 2. Keep the motor switch 

off before switching on the power supply. Make sure that the pendulum 

pointer shows zero.  

  

 

-          + 

Power Supply 

 

 

                      
                AC 

 

Motor Pendulum 
C        A 

Ammeter 
Rectifier 
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2. Find the period of oscillation, T, of the pendulum without damping 

current (natural damping). To minimize the error in measurement, deflect 

the pendulum completely to one side in the beginning and measure time 

for 20 oscillations repeatedly (say thrice). 

3. Measure successive amplitudes (on the other side of initial deflection) of 

oscillations with time. Measure amplitudes at every time interval T, that 

is measure successive unidirectional amplitudes, 
,0  

,1  
,2  etc.  

4. Repeat 3 giving the same initial deflection to minimize the errors in the 

measurement of amplitudes. 

5. Repeat 2, 3 and 4 for different damping currents, i.e. by keeping the 

damping voltage knob say at 2V, 6V, 10V etc.  

6. Successive unidirectional amplitudes as a function of time for different 

damping are plotted in a semi log graph paper (time on the normal axis 

and amplitude on the log axis). For a fixed damping plot should be a 

straight line. From the slopes of the plots, damping resistance, , can be 

estimated, for various dampings. (Plot t vs ln() to estimate damping 

constant for various damping currents.) 

 

 

B. Forced oscillations 

 

7. Keep the ‘course’ and ‘fine’ potentiometer knobs of the motor at low and 

mid values respectively. Keep the damping voltage at 2V. Adjust the 

voltage of the motor power supply (DC) to maximum.  

8. The forcing frequency a of the motor can be estimated by counting the 

number of turns eccentric disc is making per unit time using a stopwatch. 

Note the amplitude of the pendulum once it is stabilized. Slowly turn the 

‘coarse’ to increase the forcing frequency.  Again the stabilized 

amplitude is noted down. When the amplitude starts increasing, a  is 

changed in small steps using the ‘fine’ knob of the potentiometer to 

nearly locate the resonance amplitude (res) and frequency (res). In each 

case forcing frequency is noted and the amplitude reading is taken after 

the pendulum stabilizes. Notice that in the steady state situation the 

forcing frequency and the pendulum frequency are same. For small 

values of damping care must be taken to choose the values of a in such 

a way that the pendulum does not exceed its scale near the resonance. 

9.  Repeat step 8 for different damping values. 

10.  Plot amplitude versus forcing frequency graphs for various values of 

damping. Find the resonance frequency and amplitude from the graph 

and compare them with the estimates made earlier using the part A of the 

experiment.  

11. Notice phase shifts between the forcing agent and the pendulum for 

frequencies far below the resonance frequency and also for frequencies 

far above it. 
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Observations 

 
Least count the stop watch………………s 

 

           Table 1. Time period of oscillations with different damping currents 

Damping current 

(in  A) 

No. of Oscillations             Time (in s) Time period 

(in s) 

 

 

   

 

 

   

 

 

   

 

 

   

 

Table 2. Maximum values of unidirectional amplitudes as a function of time for 

different damping 

 
Damping 

current 

(A) 

Time 

t (s) 

Amplitude of 

oscillations 

(a) 

ln (a) Time 

t (s) 

Amplitude of 

oscillations 

(b) 

ln (b) 

 
0 a0 = 

 
T/2 = b0 = 

 

T = a1 = 
 

3T/2 = b1 = 
 

2T = a2 = 
 

5T/2 = b2 = 
 

3T = a3 = 
 

7T/2 = b3 = 
 

 

 
 

 
  

 

 

 
 

 
  

 

 

 
 

 
  

 

 

 
 

 
  

 

  
 

  
 

 

continued… 
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Damping 

current 

(A) 

Time 

t (s) 

Amplitude of 

oscillations 

(a) 

ln (a) Time 

t (s) 

Amplitude of 

oscillations 

(b) 

ln (b) 

 
 

 
   

 

 
 

   
 

 
 

   
 

 
 

   
 

 

 

 
   

 

 

 

 
   

 

 

 

 
   

 

 

 

 
   

 

 
 

   
 

 
 

   
 

 
 

   
 

 

0 a0 =  T/2 = b0 = 
 

T = a1 =  3T/2 = b1 = 
 

2T = a2 =  5T/2 = b2 = 
 

3T = a3 =  7T/2 = b3 = 
 

 
 

   
 

 
 

   
 

 
 

   
 

 
 

   
 

 
 

   
 

 
 

   
 

continued… 
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Damping 

current 

(A) 

Time 

t (s) 

Amplitude of 

oscillations 

(a) 

ln (a) Time 

t (s) 

Amplitude of 

oscillations 

(b) 

ln (b) 

 

 

 

 

 

 

 

 

  

 

 
   

 

 

 

 
   

 

 

 

 
   

 

 

 

 
   

 

 

 

 
   

 

 

0 a0 =  T/2 = b0 = 
 

T = a1 =  3T/2 = b1 = 
 

2T = a2 =  5T/2 = b2 = 
 

3T = a3 =  7T/2 = b3 = 
 

 
 

   
 

 
 

   
 

 
 

   
 

 
 

   
 

 
 

   
 

 
 

   
 

 

0 a0 =  T/2 = b0 = 
 

T = a1 =  3T/2 = b1 = 
 

2T = a2 =  5T/2 = b2 = 
 

3T = a3 =  7T/2 = b3 = 
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Table 3. Estimation of Damping constant and resistance for different damping currents 

 

Damping 

current 

(A) 














+ )1(

)(
ln

na

na




 















+ )1(

)(
ln

nb

nb




 

Ave. 

Logarithmic 

decrement 

 

Time period 

T (sec) 

=2 

Damping 

constant 

= 

res 

22  −=  
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Table 4. Plot for frequency vs amplitude under forced oscillation (Note: T1 is to be measured on the eccentric disc and, T2 on the pendulum.) 

 

Sl. 

No. 

Damping 

current 

(A) 

Time period of forcing oscillation 

in seconds 

Freq. of 

oscillation  

(s-1) 

mplitude of oscillation 

T1 T2 Tav 1 2 3 av  

 

 

 

 

 

 

 

 

 

 

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

 

 
 

 
      

 

 
 

 
      

 

 
 

 
      

 

 
 

 
    

 
 

continued…  
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Sl. 

No. 

Damping 

current 

(A) 

Time period of forcing oscillation 

in seconds 

Freq. of 

oscillation  

(s-1) 

mplitude of oscillation 

T1 T2 Tav 1 2 3 av  

 

 

 

 

 

 

 

 

 

 

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

 

 
 

 
      

 

 
 

 
      

 

 
 

 
      

 

 
 

 
    

 
 

 

 
continued… 
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Sl. 

No. 

Damping 

current 

(A) 

Time period of forcing oscillation 

in seconds 

Freq. of 

oscillation  

(s-1) 

mplitude of oscillation 

T1 T2 Tav 1 2 3 av  

 

 

 

 

 

 

 

 

 

 

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

  

 

 
      

 

 
 

 
      

 

 
 

 
      

 

 
 

 
      

 

 
 

 
    

 
 

 

  
continued… 
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Sl. 

No. 

Damping 

current 

(A) 

Time period of forcing oscillation 

in seconds 

Freq. of 

oscillation  

(s-1) 

mplitude of oscillation 

T1 T2 Tav 1 2 3 av  
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Results: 
 

Damping 

current 

(A) 

Logarithmic 

decrement 

 

Damping 

constant 

 (in Hz) 

Resonance frequency  

          res  (in Hz) 

Resonance  

Amplitude                   

res  

Natural freq. from 

damped osc. (in Hz) 
22

0  +=  Observed Estimated 

 

 

      

 

 

      

 

 

      

 

 

      

 

 

Precaution 
 

Do not keep the pendulum in resonance condition without damping or with a very 

low damping for a long time 

  

 

Error calculation: 
Error in estimation of  

mTmnn /]ln[ln +−=   

 






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
++=
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
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
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
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                 ………………………………………(10)           

 

Error in estimation of  

 

T

T




=  

 

Error in estimation of 0 

 

22

0

0






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+

+
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Pohl’s Pendulum 

 

41 

 

Questions: 

 
1. What is eddy current? 

2. Other than the eddy current damping force, what are the other forces those are 

affecting your experiment? 

3. What do you expect if 0 =  or 2 < 2? 

4. What are your conclusions about the phase relationship between the driver and the 

oscillator below and above resonance? 

5. Give a simple example of forced oscillation. 

6. What is the physical reason for the large amplitude oscillation at the resonance 

frequency? 

7. Why the resonance curve broadens for higher damping? 

8. Check equations 10 and 11. 

 

 Reference:  
1. PHYWE LEP 1.3.27 Forced oscillations-Pohl’s pendulum 

2. H. J. Pain, The Physics vibrations and waves.  

 

Graphs:  

 

1. Plot t vs ln() to estimate damping constant for various damping currents. 

 

2. Forced oscillation: Plot forcing frequency vs amplitude graphs for various 

values of damping. 

 

http://www.fizika.org/skripte/of-prakt/1_3_30.pdf
http://www.fizika.org/skripte/of-prakt/1_3_30.pdf
http://www.fizika.org/skripte/of-prakt/1_3_30.pdf
http://www.fizika.org/skripte/of-prakt/1_3_30.pdf

